情報電子工学科工学科 論文発表

題名	Towards locative inconsistency-tolerant hierarchical probabilistic CTL model checking: Survey and future work
掲載雑誌	Proceedings of the 11th International Conference on Agents and Artificial Intelligence (ICAART 2019), Volume 2, pp. 869-878, February 19-21, Science and Technology Publications, 2019.
著者	Norihiro Kamide and Juan Pedro Altamirano Bernal
概要	A locative inconsistency-tolerant hierarchical probabilistic computation tree logic (LIHpCTL) is introduced in this paper to establish the logical foundation of a new model checking paradigm. This logic is an extension of several previously proposed extensions of the standard temporal logic known as CTL, which is widely used for model checking. The extended model checking paradigm proposed is intended to appropriately verify locative (spatial), inconsistent, hierarchical, probabilistic (randomized), and time-dependent concurrent systems. Additionally, a survey of various studies on probabilistic, inconsistency-tolerant, and hierarchical temporal logics and their applications in model checking is conducted.
関連画像	