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Abstract. In the present paper, we propose a new approach for real-
istic image noise modeling based on a generative adversarial network
(GAN). The model aims to boost performance of a deep network de-
noiser for real-world denoising. Although deep network denoisers, such
as a denoising convolutional neural network, can achieve state-of-the-art
denoised results on synthetic noise, they perform poorly on real-world
noisy images. To address this, we propose a two-step model. First, the
images are converted to raw image data before adding noise. We then
trained a GAN to estimate the noise distribution over a large collection
of images (1 million). The estimated noise was used to train a deep neu-
ral network denoiser. Extensive experiments demonstrated that our new
noise model achieves state-of-the-art performance on real raw images
from the Smartphone Image Denoising Dataset benchmark.

Keywords: deep learning, denoiser, generative network, real-world noisy im-
ages

1 Introduction

Noise reduction is a fundamental task in computer vision, and it is used as pre-
processing step in many subsequence image processing tasks. Traditional de-
noising methods include block matching and 3D filtering (BM3D) [1], k-means
singular-value decomposition (KSVD) [2], principal component analysis with
local pixel grouping (LPGPCA) [3], and weighted nuclear norm minimization
(WNNM) [4]; they are designed to remove noise based on the properties of im-
ages and noise. In contrast, learning-based methods, such as a denoising convolu-
tional neural network (DnCNN) [5], often use paired-image datasets for mapping
from noisy images to clean images. Because the performance of learning-based
methods depends on a large training dataset, these methods require a sufficient
amount of data. As a result, noisy images are artificially created from clean
images with a known type of noise (e.g., additive white Gaussian, salt and pep-
per, and Poisson). Learning-based methods outperform most of the traditional
methods in synthetic denoising.
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However, because synthetic noisy images are generally different from real-
world noisy images, the learning-based methods work best on the same type of
synthetic noise that they were trained on. They often output poor results when
denoising real-world noisy images. Recent studies [6, 7] show that the traditional
denoising methods outperform learning-based methods when evaluated with real
images. In this study, we aimed to improve the performance of learning-based
methods for denoising real images.

To resolve this problem, the first approach is collecting a large amount of data
for training the models [8, 6, 7]. The nearly noise-free images are estimated by an
expensive and time-consuming procedure. Extensive analyses have proved need
of a dataset with high-quality image pairs for improving real-world denoising
performance. For example, the Smartphone Image Denoising Dataset (SIDD) [6]
has collected 30,000 image pairs for training and testing. Although the number
of images is relatively large, the number of different scenes (10) is limited. Thus,
the dataset may not be sufficient to train a large network.

However, creating synthetic data by adding artificial noise to images has a
clear advantage: an unlimited amount of training data can be created. How-
ever, the learning-based methods that are trained on synthetic noisy data (e.g.,
Gaussian noise or Poisson noise) perform poorly on real data because the train-
ing noise is unrealistic. Thus, another approach is to focus on building a better
noise model. Methods such as convolutional blind denoising network (CBDNet)
[9] and unprocessing images (UPI) [10] are intended to build a realistic noise
model. In particular, according to the UPI method [10], a combination of Gaus-
sian noise and Poisson noise was added to the raw image by means of an inverting
process. For data augmentation, GAN-CNN based blind denoiser (GCBD) [11]
used a generative adversarial network (GAN) to learn noise rather than noisy
images, and the method was tested with zero mean noise. Despite having some
limitations, the GCBD method showed the potential of a learning-based method
(GAN) to generate natural noise if the expectation of the unknown noise is
available. Moreover, the advantages of applying the denoising algorithm before
processing in a non-linear camera processing pipeline have been proven [12, 7].

(a) Noise free (b) Gaussian (c) Shot+Read (d) Our model (e) Real noise

Fig. 1: Different noise model outputs displayed in linear raw space (red channel
only).

In light of the above analysis, we adopted a learning-based technique (GAN)
to generate noise in raw image data in a large dataset. The proposed model
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allows us to learn not only synthetic noise but also real noise by using a more
realistic dataset for training. Some noisy images generated by noise models are
shown in Fig. 1.

The main contributions of the present paper include the following:

– We propose a GAN-based model that can be trained with both synthetic
and real noise in raw image data. The generated noise is used to create a
paired-image dataset for training a denoising deep neural network (DNN).

– Extensive experiments demonstrated that our method can improve the per-
formance of available denoising DNNs when they denoise real images.

2 Related work

2.1 Deep Learning-based Denoisers

The CNN-based methods dominate image denoising, and they have obtained
good performance for removing artificial noise, such as additive white Gaussian
noise (AWGN). Among them, DnCNN [5] is the first CNN-based blind denoiser.
The DnCNN method shows that the residual learning and batch normalization
help boost the denoising performance and training speed as well. Many other
denoising methods [9, 13, 14] use the same strategy by using deep neural networks
for mapping from noisy images to denoised images. The FFDNet [15] model
proposed non-blind denoising by using a noise level map as an additional input.
In general, the learning-based methods require abundant paired-image datasets;
thus, AWGN is chosen to create the training dataset. These methods can be
applied for denoising real-world noisy images; however, due to a lack of real
data, their performance on denoising real images is still limited.

Consequently, as another approach to improving real-world image denoising,
some recent work has focused on collecting real paired-image datasets. In the
studies that created the Darmstadt Noise Dataset (DND) [7] and SIDD [6], the
authors proposed extensive procedures to obtain noise-free ground truth images.
These procedures require a large number of images to produce a ground truth
dataset. Moreover, [6] showed that a deep learning denoiser trained with a high-
quality dataset outperforms the classic methods (e.g., BM3D [1]) when denoising
real images. Despite this, the number of training images is still relatively small
compared with other computer vision tasks (such as image classification). More-
over, it is difficult to apply their process to produce paired images for moving
objects. If we can create realistic paired training data, this approach would be
promising. We focus on this data augmentation approach because it is generally
understood that training data play a critical role in improving the performance
of CNN-based methods.

Image denoising can be applied to raw image data as demonstrated in the
work of [10]. This method employed a process called “unprocessing” to invert
the image processing pipeline. The signal-dependent noise then is added to the
clean image to produce a noisy version.
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2.2 GAN-based Denoisers

Generative adversarial networks [16] have been actively studied over the past few
years. GAN models can minimize a loss function that classifies output images as
real or fake. Given a training dataset, the GAN tries to generate new data with
the same statistics as the training data. Recent GAN applications can produce
impressive results [17, 18], indicating the ability of GANs to learn complex dis-
tributions. The idea of applying a GAN to image denoising was first introduced
in the work of GCBD [11]. In this work, the generative network was trained
to produce noise to create paired-image data. The paired-image data were then
used to train a denoising network, such as DnCNN. We adopted this idea for
two reasons: first, the GAN can be trained to learn sophisticated real noise. This
realistic noise model helps the CNN learn real-world noisy images, thus further
boosting the performance of a CNN-based denoiser. Second, the realistic noise
model solves the problem of poor denoising performance due to a lack of data.

We improved on prior work [11] not only with some architectural choices but
also with the noise formation process. Instead of training the GAN to learn noise
in the standard red green blue (sRGB) color space, we trained the GAN model
with raw image data obtained by the clean image inverting process described
in [10]. We investigated the noise modeling with raw image data and demon-
strated the advantages of a GAN for improving the denoising performance for
real images.

3 Proposed method

Clean 

images

Raw 

images

Shot + read 

noises

DNN 

denoiser

Image 

inverting
Generative 
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network

Denoised

images
+

Fig. 2: Overview of proposed model. The “clean” images are converted to raw
images through unprocessing. After adding noise, the resulting images are used
to train a GAN to produce a noise model. A deep network denoiser uses the GAN
output (noise) and clean images to learn how to map (create) clean images from
noisy images.

Fig. 2 shows the proposed architecture. The proposed method consists of
three steps: First, we follow the process that is shown in [10] to invert clean
images from sRGB space to raw image data. The inverted images are assumed
to be noise-free images. Second, we obtain a noisy version by adding shot and
read noise, and we then train the GAN model to learn the noise distribution
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from the generated data. During this step, the GAN model is also fine-tuned
with a real noise dataset (SIDD) to learn the real noise distribution. Finally, the
generative network output (noise) and the clean image are used to produce a
paired-image dataset, which is fed to a DNN.

3.1 GAN Noise Generator
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Fig. 3: GAN generator architecture. The model consists of five residual blocks
(ResBlocks, see Fig. 4). Input to the network consists of concatenations of clean
images and noise levels, and the generator network outputs estimated noise.
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Fig. 4: Residual block (ResBlock)

Architecture: Conventional GAN models [11, 19] often map from a random
noise vector z to an output image y. In our proposed GAN model, the noise
is added to the input of generative network as described in Fig. 3. We pass
the additional input ”Noise level” to the generator network, in particular, we
estimate the shot and read noise parameters of input image and compute a per-
pixel of the standard deviation of that noise. Inspired by the super-resolution
GAN (SRGAN) model [18], we adopted that paper’s model and removed the
up-sampling blocks.

Discriminator: We followed a design similar to that of SRGAN. The discrim-
inator network is depicted in Fig. 5.

Training objective: As described in a previous paper on GANs [16], the aim
is to solve a min-max problem between discriminator D and generator G.

min
G

max
D

Ex∼Pr
[log(D(x))] + Ex̃∼Pg

[log(1−D(x̃))], (1)
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Fig. 5: Discriminator architecture. The convolutional units are shown with their
corresponding kernel size, number of outputs, and stride. All leaky rectified linear
unit (LReLU) layers are set with a negative slope value of 0.2

where Pg is the synthetic data distribution and Pr is the real data distribution.
Because the output of the generative network is noise, we found that the SRGAN
training loss function leads to unstable model training. Arjovsky et al. [20] pro-
posed an alternative objective function, called the Wasserstein distance, which
measures the difference between two distributions. Moreover, the Wasserstein
GAN with gradient penalty (WGAN-GP) [21] improves the stability of GAN
training by introducing a gradient penalty.

Loss = Ex̃∼Pg
[D(x̃)]− Ex∼Pr

[D(x)] + λEx̂∼Px̂
[‖∇x̂D(x̂)‖2 − 1)2]. (2)

In our experiments, we used the Adam optimizer [22] and kept the hyper-
parameter values from the original WGAN-GP paper (α = .0002, β1 = 0.5, β2 =
0.9, and λ = 10).

Training steps: For learning real-world noise, we used the following two-step
training approach:

– The GAN is pre-trained with a large dataset (MIR dataset) with realistic
synthetic noise.

– The pre-trained GAN is then re-trained with another dataset that has real
noise (e.g., the SIDD benchmark) but fewer data.

With this training strategy, we can train the GAN to generate more realistic
noise while avoiding overfitting of synthetic noise.

3.2 Denoising Neural Network

We produced paired-image data after training the GAN model. The inverted
raw image is used as a clean ground truth. In particular, for image denoising
networks, we adopt two architectures: DnCNN [5] and UNet-based [23] denoisers.

DnCNN: The DnCNN consists of 17 units with 3 types; more network details
can be found in the DnCNN paper [5]. Batch normalization also has been used to
speed up the training process and boost the denoising performance. The model
predicts the residual image. For the training objective, we used mean squared
error (MSE) loss, as suggested in the original paper.
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Fig. 6: UNet denoising architecture. Skip connections were added between same-
scale encoder and decoder blocks. A 4-channel raw noisy image and noise level
are input, and the output is a 4-channel denoised raw image.

UNet: The UNet architecture is depicted in Fig. 6. The model uses skip connec-
tions between same-scale encoder and decoder blocks. The input for the UNet
denoiser is different from that for the aforementioned DnCNN denoiser. To make
the model more robust, we added random noise (shot and read noise) as addi-
tional input for the denoising network. The network was trained to predict clean
images directly. During the experiment, we found that the MSE loss did not
work well as a training objective; thus, we replaced it with the sum of absolute
differences loss.

4 Experiment

We performed our experiment on a single machine with an Intel i7-6800 CPU
running at 3.40 GHz with 32 GB of RAM and a GeForce GTX 1080 Ti double
GPU. The proposed model was implemented in the PyTorch framework [24].

4.1 GAN Training

To train the GAN in a manner similar to that in [10], we used the MIR Flickr ex-
tended dataset [25], which contains 1 million high-quality photographic images.
The dataset is considered to contain “clean” images. We then randomly cropped
each image to the size of 256×256. We randomly flipped the images horizontally
and vertically (with probability of 0.5) for data augmentation. Because we did
not resize the original image, some small images were not included in the training
and validation datasets. We reserved 5% of the data for evaluation. The model
learning rate was 10−3, the batch size was 32, and we trained the generative and
the discriminative networks for 250,000 iterations.

To train the GAN on a real-world noisy distribution, we then fine-tuned it
with a real image dataset (SIDD). The batch size was unchanged, a smaller
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learning rate (10−4) was used, and the number of training iterations was about
100,000.

4.2 Denoiser Training

The noise produced from the generator network is used to prepare a paired-
image dataset for training DNN denoisers. We applied the synthetic data to two
denoiser architectures, as described in subsection 3.2:

– DnCNN: We kept the batch size of 32, learning rate of 10−3, and training
epochs of 10.

– UNet: The model used a batch size of 64, learning rate of 10−4, and 6 training
epochs.

4.3 Test Datasets

SIDD: The SIDD benchmark consists of 30,000 image pairs comprising both
raw images and images in the sRGB color space. The evaluation set contained
256× 256 size image patches at 32 random non-overlapping regions for each im-
age. A total of 40 images were used for evaluation (total of 1,280 image patches).
The dataset was captured under different settings (cameras, camera settings, and
light conditions), resulting in 200 scene instances, of which 160 were for training
and 40 were for evaluation purposes. The dataset also provided the estimated
noise level for each image, which is used as input in many denoising algorithms.
To evaluate denoising method, the SIDD dataset provides an online submission
system1.

DND: The DND consists of 50 pairs of images with real noise and corresponding
clean images. The (nearly) noise-free image is obtained by averaging a number of
noisy images of the same scene. The dataset contains the images taken from four
consumer cameras with wide range of different film speeds. An online submission
system determined the denoising performance in terms of peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM)2.

4.4 Results

Real-world denoising performance: Table 1 shows the denoising results
for the SIDD evaluation dataset. We applied our model to denoise raw image,
the metrics are evaluated in both raw image data and after converting to s-
RGB space. The proposed model outperforms previous denoising models in both
metrics (PSNR and SSIM). In particular, the DnCNN with GAN-based modeling
surpassed the original DnCNN by 2.25 dB. In the second test, we see that the
proposed noised model improved the performance of UNet by 3.09 dB.

1 https://www.eecs.yorku.ca/˜kamel/sidd/benchmark.php
2 https://noise.visinf.tu-darmstadt.de/benchmark/
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Table 1: Performance comparison of denoising methods on SIDD benchmark.
Raw sRGB

Method PSNR SSIM PSNR SSIM

BM3D 45.52 0.980 30.95 0.863
DnCNN 43.30 0.965 28.24 0.829
UNet 45.69 0.976 32.93 0.854

GAN + DnCNN (ours) 45.55 0.980 32.05 0.809
GAN + UNet (ours) 48.78 0.986 35.78 0.919

Table 2: Performance comparison of denoising methods on DND benchmark.
Raw sRGB

Method PSNR SSIM PSNR SSIM

WNNM 46.3 0.9707 37.56 0.9313
EPLL 46.31 0.9679 37.16 0.9291
BM3D 46.64 0.9724 37.78 0.9308
BM3D + VST 47.15 0.9737 37.86 0.9296
DnCNN 47.37 0.9760 38.08 0.9357
N3Net 47.56 0.9767 38.32 0.9384
UPI 48.89 0.9824 40.17 0.9623

GAN + DnCNN (Ours) 47.46 0.9769 38.34 0.9418
GAN + UNet (Ours) 49.04 0.9827 40.21 0.9600

Table 2 shows the quantitative results for the DND benchmark [7]. The pro-
posed model performs better than classic methods (e.g., BM3D, WNNM, and
EPLL[26]). Compared with other deep learning-based method that using same
baseline (DnCNN [5]), our model consistently yields higher PSNR and SSIM
values on both raw data and after conversion to s-RGB space. Notably, the pro-
posed model outperforms state-of-the-art method UPI [10] which used the same
baseline (UNet) by 0.15dB in denoising raw image.

Qualitative results: Fig. 7 and Fig. 8 show the output of our model and some
state-of-the-art denoisers with the SIDD and DND benchmarks.

Ablation studies: Table 3 shows ablation studies for various configurations
of our model. In the table, “Gaussian, blind” indicates the training data were
generated with AWGN and applied to a blind denoiser; “Non-GAN” indicates
that instead of using the GAN to produce noisy images, we added noise to the
input images using the procedure given in [10]; and “GAN, blind” indicates that
we used the GAN noise model but did not add the noise level to the network
input. Using the noise level information improves the denoising performance by
3.7% (PSNR) and 6.7% (SSIM) compared with blind denoising. The GAN noise
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(a) Noisy (b) BM3D (c) DnCNN+ (d) UNet+

Fig. 7: Qualitative comparison of denoising methods. First column: noisy images;
second column: images denoised using BM3D (σ = 50); third column: images
denoised using DnCNN and GAN-based noise model; fourth column: images
denoised using UNet and GAN-based noise model. Zoom in for a better view.
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18.77 dB 33.12 dB 35.23 dB 35.90 dB
Noisy WNNM [4] EPLL [26] BM3D [1]

18.77 dB 38.24 dB 37.37 dB 36.98 dB 39.33 dB

Noisy Image N3Net [14] UPI(raw) [10] UPI(sRGB) [10] Ours

Fig. 8: The results of denoising raw image from DND [7] dataset. Zoom in for a
better view.

Table 3: Ablation study on SIDD benchmark. The number in parenthesis is the
relative improvement to the our best performing model. To compute the relative
improvements, we change PSNR to RMSE (RMSE =

√
10−PSNR/10) and SSIM

to DSSIM (DSSIM = (1−SSIM)/2) and then calculate the relative reduction
in error.

Raw sRGB
Method PSNR SSIM PSNR SSIM

Gaussian, blind 45.69 (29.9%) 0.976 (41.7%) 32.93 (28%) 0.854 (44.5%)
Non-GAN 47.76 (11.1%) 0.983 (17.6%) 34.39 (14.8%) 0.897 (21.4%)
GAN, blind 48.45 (3.7%) 0.985 (6.7%) 35.37 (4.6%) 0.913 (6.9%)
GAN, non-blind 48.78 (0.0%) 0.986 (0.0%) 35.78 (0.0%) 0.919 (0.0%)

model increases the performance by 11.1% (PSNR) and 17.6% (SSIM), showing
the usefulness of our proposed noise model.

5 Discussion and Conclusion

5.1 Noise Level Estimation

In section 4.4 we present the denoising performance with both blind and non-
blind denoisers. It is noted in [27] that incorporating information about the
precise noise level may boost the performance of a denoiser. In the UNet denoiser,
we added the random noise level as an additional network input. During the
testing phase, the noise level was provided in the metadata. However, in real-
world applications, the noise level is generally not available. We think that using
a noise level estimation algorithm can further improve our results, and we will
investigate this in future work.
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5.2 Conclusion

In the present paper, we introduce a GAN-based model for real noise estimation
in raw image data. The model consists of an “unprocessing” process to convert
images from the sRGB space to raw image data. By using generated noise, we
can generate a large amount of data for training a deep DNN. Although our
approach contains some limitations, such as relying on prior statistics stored in
the metadata and approximations of the noise level, the experimental results
show the effectiveness of our data augmentation approach for real-world image
denoising.
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