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Abstract. Recent face anti-spoofing methods have achieved impressive
performance in recognizing the subtle discrepancies between live and
spoof faces. However, due to directly holistic extraction and the re-
sulting ineffective clues used for the models’ perception, the previous
methods are still subject to setbacks of not being generalizable to the
diversity of presentation attacks. In this paper, we present an attended-
auxiliary supervision approach for radical exploitation, which automat-
ically concentrates on the most important regions of the input, that
is, those that make significant contributions towards distinguishing the
spoof cases from live faces. Through a multi-task learning approach, the
proposed network is able to locate the most relevant/attended/highly
selective regions more accurately than previous methods, leading to no-
table improvements in performance. We also suggest that introducing
spatial attention mechanisms can greatly enhance our model’s percep-
tion of the important information, partly intensifying the resilience of our
model against diverse types of face anti-spoofing attacks. We carried out
extensive experiments on publicly available face anti-spoofing datasets,
showing that our approach and hypothesis converge to some extent and
demonstrating state-of-the-art performance.

Keywords: Face anti-spoofing · Multi-task learning · Feature Extrac-
tion · Self-attention

1 Introduction

Face recognition expertise is currently one of the most prominent subjects at-
tracting a lot of research attention and large collaborations due to its potential
for convenient effectiveness in biometric-based security applications. Due to or-
ganizations’ endeavors, current state-of-the-art modalities have been achieving
tremendous accuracy beyond that of human ability. However, the related appli-
cations have been generally turned into objects appealing to illegal access of the
so-called facial spoofing attacks, due to their incompetence in identifying im-
posters. As a result, these systems are really vulnerable to such impersonating
attacks, e.g., replayed videos or photographs, which are perfectly recorded by so-
phisticated devices. Face anti-spoofing (FAS) techniques are thus being urgently
developed for assurances of face recognition system operation.
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There have been many attempts at enhancing effective solutions for prevent-
ing facial impostures in recent years. At first, the previous methods[1] used image
distortion analysis to capture optical textural differences between presentation
attacks (PAs) and live faces. Other methods[2, 3] focused on local binary pat-
terns to identify distinguishable features for further improvements, while some
techniques[4, 5] attained some success. However, the nature of the handcrafted
features that these methods exploited are not generalized traits, the resulting
models hence showed limitations on practical environments, and are prone to
dramatically degraded performance in peculiar media.

Most recent studies have obtained significant achievements based on convo-
lutional neural networks (CNNs) along with supplemental dependencies. Luo et
al.[6] adopted a CNN long short-term memory (LSTM) architecture to learn spa-
tiotemporal patterns in sequential frames for distinguishing genuine cases from
spoof activities, whereas LSTM was previously used almost for sequence-related
tasks. Atoum et al.[7] used an auxiliary supervision associated with a patch-
scored modality, and then fed the result into a support vector machine-based
classifier for PA detection. Compared with previous work, an algorithm[8] that
relied on the extra remote photoplethysmography (rPPG) pattern in addition
to the auxiliary supervision[7] made an advance to some extent. Recently, Yang
et al. attempted to provide enhanced spatiotemporal patterns with the help of a
pretrained CNN-LSTM model augmented by an attention mechanism and their
own synthetic data[9].

However, it seems that these techniques might not radically capture essential
characteristics for genuine and counterfeit case analysis. For instance, the models
in [8, 10] put a lot of effort into the full scope of auxiliary supervision, namely
facial depth maps and rPPG signals, without any highly selective approaches.
In other words, such learning holistic representations of input images might
lead to the excessive exploitation and thus guide the models’ focus onto redun-
dant/irrelevant information, interfering with the models’ perception. Similarly
to auxiliary cases, the binary supervision-based networks[9, 2] did not enable the
networks to capture sufficient distinct features needed to discern spoof faces.
On the contrary, that induces the networks to have a great tendency towards
inconsistent features, raising the high possibility of being overfitted and poor
performance in most test cases.

To tackle these problems, we developed the idea of radically capturing the
most relevant locations, but still making the best use of auxiliary supervision
because of its undeniable contribution in prior methods. Hence, we propose
an attended-auxiliary supervision (AAS) architecture in which the attended-
auxiliary information is comprehensively used in both the highly selective region
proposal and inference stages. We represent this AAS/patch-driven facial depth
map supervision for live and spoof images. To invigorate the adoption of the
AAS, the patches used to estimate these partial depth maps are intended to be
sampled from highly selective regions of input images based on their contribu-
tion to model’s decision. In order to make these regions identifiable, we built a
two-module model. The first module uses a pretrained network integrated with



Attended-Auxiliary Supervision 3

squeeze-and-excitation network (SENet) blocks[11], which are useful for describ-
ing the nature of channels in feature blocks, to extract the more distinguishable
spatial properties. Then, the employed LSTM network converts the resulting
embeddings into temporal information for sequential frame-driven classification.
The second module is processed within reciprocal stages. The Region Proposal
Stage (RPS) is in charge of best aligning initial advice given by the first mod-
ule with the model’s situation, and then proposing the ensuing highly selective
regions to the Attended-Auxiliary Execution Stage (AAES). In the AAES, the
highly selective regions are fully exploited through the corresponding patch-
driven depth map regression, which stimulates the network to explore sufficient
generalizable representations of both spoof and live images.

Our main contributions are summarized as follows:
•We present a practical solution to radically exploit the most relevant regions

of input images based on the patch-driven depth map supervision in both channel
and region attention scenarios for 2D PAs. Such AAS adoption has the purpose of
partially influencing the network to learn adequate salient information of input
images, thereby alleviating the performance degradation caused by irrelevant
information.

• To this end, we designed the AAS framework towards a multi-task learning
fashion to further advance the model’s perception of highly selective regions.

• We demonstrate the reliability of our model and arguments by evaluating
our framework on publicly available FAS datasets. Our experimental results show
the FAS community another potential concept to resolve ongoing issues in FAS.

2 Prior Work

Traditional approaches. Distinguishable features are the most fundamental
keys to recognize spoof cases. Many prior patterns have been, to a degree, flour-
ishingly built upon such ideas since several years ago. However, these patterns
are still essentially handcrafted feature representations, such as local binary
patterns[12–14], HOG[15, 16], and SIFT[17], which produce modest outcomes
via conventional classifiers, namely support vector machines and linear discrim-
inant analysis. The handcrafted-feature-based methods thus showed limitations
regarding generalizable representation in PA detection. To cope with these dif-
ficulties, researchers have approached these problems in another way that maps
input images onto other domains, namely HSV, YCbCr[18, 19], temporal do-
mains[20, 21], and Fourier spectra[22].

In lieu of using a mere single frame, researchers have attempted to exploit the
traits of facial motions in several consecutive frames, such as determining “facial
liveness” with eye-blinking detection[5, 23] and mouth and lip motions[4].
Deep learning-based approaches. During the deep learning era, the FAS
modalities have thrived dramatically on prior difficulties. Some of the modern
CNNs[24, 25] have been used as feature extractors to discriminate live and spoof
images. In [26], Jourabloo et al. tackled anti-spoofing in a particular way that
treats PAs as decomposition issues, inversely decomposes a spoof face into spoof
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Fig. 1. Translation offsets of the orange regions, given the white initial locations of the
AM, are thoroughly regularized based not only on binary supervision, but also on the
attended auxiliary supervision in a multi-task learning manner.

noise and a live face, and then uses the spoof noise for classification. At that
point, Liu et al.[8] attempted to holistically estimate depth maps and rPPG sig-
nals from live and spoof faces through a recurrent neural network-CNN model
based on ground truths predefined with dense face alignment[27]. Inspired by
auxiliary supervision[8], Kim et al.[10] introduced an additional auxiliary su-
pervision by extending the reflection map into PAs, which intensified the re-
silience of their model on PA types. Additionally, some works have proposed
spatiotemporal features. In particular, Yang et al.[9] adopted spatiotemporal
features extracted from discriminative regions for PA detection using a CNN-
LSTM structure, which was already pretrained on their own synthetic data.

Motivated by [9, 28], we partly used a CNN-LSTM model, but with advanced
subnets in order to precisely interpret temporal features, as an Advisor Module
(AM), supporting the rest of network in determining where to look first. Fur-
thermore, we imposed extra essential constraints towards a multitask-learning
scheme on the proposed model, so that the representation regularization of re-
fined subtle offsets, mentioned in Subsec.3.2, should be more vigorous than its
predecessor[9]. As shown in Fig. 1, the AM and the rest of the model share similar
considerations in genuine cases, but spoof activities cause a large displacement.

3 Proposed method

The main objective of our approach is to direct the network to autonomously
centralize regions of input images possessing the model’s decision, rather than
digesting completely unprocessed full scope of inputs, which avoids redundant
information causing noise and detrimental effects on performance. In contrast
with previous auxiliary supervision-based methods, the most striking feature
of our approach, as aforementioned, is that we meticulously exploit the patch-
driven facial depth map supervision for both live and spoof faces on the basis
of the patches. As shown in Fig. 2, the proposed architecture comprises two
main interdependent attending modules. The AM bases the fabric of a CNN-
LSTM incorporated with SENets on performing the classification task itself and
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Fig. 2. Proposed framework constituted by interdependent attending modules. The
AM plays a main role in providing the AAM with its experience in discerning spoof
from genuine images. The AAM, in turn, draws attention to the received advice and se-
quentially processes images with reciprocal stages. For the architecture interpretation,
the white, yellow, and green blocks represent feature blocks, sequential filters followed
by a BatchNorm, and a rectified linear unit (RELU) activation function, respectively,
each with a given size of 3 × 3 and pooling layers. Apart from that, the gray blocks
are depth-wise convolutions with size 7×7 and point-wise convolutions with size 1×1.
At the AAES, the patches proposed by the RPS are used to extract and to synthesize
coarse to fine features with the help of the patch-driven depth map supervision D for
PA detection. The figured is best viewed online in color.

conveying its initial advice to the Attended-Auxiliary Module (AAM) for spotting
which part of the input is plausible to look into (hereafter referred to as initial
regions). The AAM with reciprocal stages thereafter build its attention to the
most relevant regions upon the initial regions.

3.1 Auxiliary Supervision

Depth map. The fundamental disparity between basic PAs, such as print and
replay attacks, and live faces is basically manifested in the depth, the distance
from points of an object to a capturing device. In practice, such spoof cases,
which were previously recorded for several times by diverse devices, are often
presented in even and flat facial surfaces, e.g electronic displays and print ma-
terials. However, live faces, which are captured directly in front of the camera,
are not completely analogous to PA properties, with differences in the color
distribution and illumination reconstructions, but more importantly, the depth
due to the irregular geometry of live faces. According to this point, we consider
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the basic PAs and genuine faces as flat images and depth maps, respectively.
However, due to a shortage of related ground truth labels for the depth maps
in spoof datasets, PRNET[29] was used to produce the corresponding ground
truth labels by estimating the depth maps for genuine images. Specifically, the
ground truth depth maps D estimated at facial regions are defined as follows:

D(I|y) =

{

0, if y is spoof,
1

|D|d(I), if y is genuine,
(1)

where I is a given input image with label y of either 0 or 1. The depth map
distance d(I) is normalized from 0 to 1 by the intensity maximum |D|, where
values of 0 and 1 represent the farthest and closest points to the camera, respec-
tively. Based on the Eq.1, the spoof cases’ supervision is also regarded as depth
maps, but with all distance values of zero.

3.2 Network Architecture

The previous model[9] used a simple CNN-LSTM architecture for initial ad-
vice providing, and weight-shared CNNs worked under the binary classification
for attended region mining, resulting in the exploitation of weak features and
the inefficient utilization. To resolve this weakness, our architecture is further
advanced by an effective combination of two interdependent attending modules
with the use of the patch-driven depth map supervision, which enables the whole
network to exploit enough generalized clues that are supposed to strongly boost
the model perception. Apart from that, we are still able to achieve robust per-
formance without the use of bipartite auxiliary supervision, as in [10], which
requires very time-consuming preparation. Typically, we process the input as
video classification by feeding N sequential frames directly into the AM to teach
it spatiotemporal information, largely helping the module to accurately converge
on key regions.
Advisor Module (AM). Let

{

Vi, yi}
k
i=1

describe the set of training data,
where Vi is the i-th training video among k training videos and yi is the cor-
responding label where 0 or 1 represents the attribute of Vi, namely genuine or
spoof, respectively. As aforementioned, the CNN presented in Fig. 2 takes as in-
put N sequential frames from

{

Vi} =
{

Fi}
m
j=1

, where F i
j denotes the j-th frame

among m frames extracted from the i-th video. We are aware of the main role of
the AM, which must be powerful to correctly provide the AAM with the initial
regions. Accordingly, we use a pretrained model, a 101-layer residual network
(Resnet) pretrained on the ImageNet dataset for the CNN, into which minor
SENet subnets were integrated for the channel attention.

SENets. With the SENet functionality, the informative channels of each fea-
ture map are remarkably intensified, whereas the less useful ones are greatly
suppressed, as opposed to being equally treated by conventional models. Each
feature map from each residual block particularly undergoes the squeeze-and-
excitation process for channel analysis and enhancement. As illustrated in Fig.
3, a feature map X is firstly shrunk to a C-sized vector by the global average
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Fig. 3. Fundamental structure of a squeeze-and-excitation block, attached to each of
the 101 residual blocks as a channel-wise enhancement submodule.

pooling (GAP) layer at the squeeze stage for the purpose of channel analysis.
The shrunk feature is then transferred to the excitation stage, where the channel
enhancement is represented by two fully connected (FC) layers, before sending
it back to X, with channel-wise weighting thereafter to obtain the augmented
feature map X̃. Taking advantage of the subnets increases the confidence in
avoiding overfitting caused by unnecessary channels. In addition, the aforesaid
LSTM introduced behind the GAP is accountable for interpreting spatial infor-
mation in the CNN as temporal patterns, which aims to make discrete spatial
information more mutually dependent and have a closer relationship between
sequential frames.
Attended-Auxiliary Module (AAM). The workings of this module consist
in the region attention mechanism with reciprocal functions, both of which are
observed in the RPS and AAES.

Region Proposal Stage (RPS). Motivated by [28], which used a spatial trans-
former network to be sensitive to spatial changes of input, the AAM is thus
offered the differentiable attention to any spatial transformation, and it learns
to align the initial regions with locations of the most relevant regions via learn-
able parameters. Because of the difficulties in directly determining these loca-
tions, we thus let the model be automated to adjust the learnable parameters as
translation offsets, which are subsequently associated with the anchors in order
to locate the most relevant regions. To enable the model to optimize the offset
parameters during the training period, these were set up as the affine transfor-
mation M , whose resulting patches are then manipulated and collected by a grid
sampler in the RPS as follows:

M =

[

sx 0 tx
0 sy ty

]

, (2)

where sx, sy must be constant scaling ratios of an image in the x and y-axes,
respectively, in order to achieve K constant-sized patches. In contrast, tx and
ty along the corresponding axes are adaptive translation offsets for every epoch.
As indicated in Fig. 2, these offsets are achieved by attaching two extra filters,
namely a 7×7 depth-wise layer followed by a 1×1 point-wise layer, to the 2, 048×
7× 7 feature map Fk behind the GAP layer. Deriving the K × 2 output of [tx,
ty] from these filters is, however, far more efficient in reducing the complexity of
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the number of parameters and operations than that from FC layers[28], thereby
easing degradation in performance more greatly.

The anchors, which are locations of the initial regions given by the AM, are
recommended to the RPS for subsequent proposed patches through the effect of
Gradcam[30]. In effect, we used Gradcam to enhance the analytical capability
of the AM to interpret its concentration on specific regions of the input image,
with regard to the considered label, for the provision of the anchors. According
to Gradcam, F k with the predicted label-related score yc is extracted for the
gradient αc

k in terms of F k.

αc
k =

1

z

∑

i

∑

j

δyc

δF k
ij

, (3)

where z is a normalizing constant. After that, a 7×7 Gradcam map Sk is obtained
by applying a RELU layer to the weighted feature map,

Sk = RELU(
∑

k

αk
cF

k). (4)

The 7 × 7 Gradcam map shows the important regions, with respect to yc,
which are of interest to the AM’s performance. To enhance visualization, we turn
the Gradcam map into a score map whose size is upsampled to be similar to that
of the input, mentioned in Subsec. 4.2, using bilinear interpolation. An averaged
pooling layer overlaid on the score map results in a 4 × 4 grid, which is used
to identify the K highest scored regions in the grid cells. Finally, the anchors
extracted from theK regions are transferred to the RPS for the above-mentioned
alignment.

In fact, although the RPS is implemented with all the above initial inspi-
rations[9, 28, 30], the offset-regularizing effects of the surroundings, namely the
AM and the AAES, on the RPS are far more intensive and extensive than that
of the prior approaches in channel interaction and supervision, respectively.

Attended-Auxiliary Execution Stage (AAES). The proposed patches from the
RPS are fetched by the AAES coupled with bypass connections, which aim
to conflate both low-level and high-level features collectively. Given the obvi-
ous benefits of the RPS for the AAES, the partial depth map regression with
the corresponding attended patches of a face is much less demanding than the
straightforward generation of a full depth map from the face. In addition, based
on closely related constraints of regression and classification in a multi-task learn-
ing manner, the AAES is fully able to extract enough related features and to
ignore the less useful context, helping the RPS quickly converge on optimal
offsets. To be more effective, the 14 × 14 low-level features at the first layers
are channel-wise associated with the high-level features to preserve the depth
of information because some distinct information existing at the low-level stage
might be significantly attenuated or virtually vanish after further processing.
The inferred scores behind the softmax layer of the AM that need to receive
a greater emphasis by an exponential transformation are eventually fused with
probabilistic results of the AAM for the final decision.
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Table 1. Ablation study using Protocol 1 of the OULU-NPU dataset.

Model Channel Attention Region Attention AAS APCER (%) BPCER (%) ACER (%)

Model A X X 2.0 0.7 1.4

Model B X 1.6 0.2 0.9

Model C X X 1.6 0.0 0.8

Model D X X X 1.1 0.1 0.6

Objective Functions. To enable the AAS, we employed a depth loss to super-
vise regression of the partial depth maps from the corresponding patches.

JD =
1

M

M
∑

i=1

K
∑

j=1

|| CNNAAM (P j
i , ΘD)−D

j
i ||2

1
, (5)

where JD depicts the regression loss between the partial depth maps estimated
from the corresponding patches P and the ground truth label D, while ΘD, K,
and M are CNNAAM parameters at the AAES, the number of patches, and
batch size of training images, respectively. In addition, the losses of both the
AM and the AAM trained in a multi-task learning manner need to be attached
to different levels of importance.

Joverall = λ1JD + λ2JAD + λ3JAA, (6)

where Joverall, JAA, and JAD refer to the overall loss, the softmax cross-entropy
losses designed for the AAM, and the AM. During each training stage, we accom-
modate the magnitudes of weights λ to the stage so as to balance the involved
losses.

4 Experiments

4.1 Datasets and Metrics

Datasets. We evaluated the performance of our model by using two publicly
available datasets. Specifically, the assessments were conducted on only the
SiW[8] and OULU[31] datasets, which are new datasets with very high resolu-
tion and a wide variety of practical protocols covering subject, pose, illumination,
medium, and attack variations. These protocols can rigorously verify quality and
efficiency of a model through cross-testing in media, pose, and unknown attacks.
Evaluation Metrics. To make comparisons with prior works, we report our
results with the following metrics: attack presentation classification error rate
(APCER)[32]; bona fide presentation classification error rate (BPCER)[32]; and
average classification error rate (ACER), which equals (APCER+BPCER)/2[32].

4.2 Implementation Details

The input fed to the network was sequential frames (N = 5) of 224× 224 pixels.
Four patches K with size of 56 × 56 pixels and sx, sy of 0.25 were selected in
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Table 2. Intra-testing results on three SiW protocols.

Protocol Method APCER (%) BPCER (%) ACER (%)

Auxiliary[8] 3.58 3.58 3.51
STASN[9] − − 1.00

1 DepthFreq[33] 0.80 0.50 0.67
BASN[10] − − 0.37

Ours 0.21 0.03 0.12

Auxiliary[8] 0.57± 0.69 0.57± 0.69 0.57± 0.69
DepthFreq[33] 0.00± 0.00 0.75± 0.96 0.38± 0.48
STASN[9] − − 0.28± 0.05

2 BASN[10] − − 0.12± 0.03
Ours 0.03± 0.02 0.10± 0.10 0.07± 0.06

STASN[9] − − 12.10± 1.50
Auxiliary[8] 8.31± 3.81 8.31± 3.80 8.31± 3.81

DepthFreq[33] 9.50± 1.20 5.30± 2.10 7.40± 2.90
3 BASN[10] − − 6.45± 1.80

Ours 3.35± 2.62 4.15± 1.50 3.75± 2.05

our experiments. Our architecture was trained on a single GeForce GTX 1080
GPU and implemented in the PyTorch framework with a learning rate of 5e− 5
for the first two training stages, and 5e− 6 for the last. In addition, λ1, λ2, and
λ3 were set as 0.5, 10, and 10 in turn.
Multi-step Approach for Training. In this case, we used a training procedure
similar to that used in [9] to divide the progression of training into three main
stages. During the first stage, the AM was trained with a learning rate of 5e− 5
over 10 epochs. Likewise, the AAM was trained with the same learning rate for
another 10 epochs while the AM’s parameters were not updated. Both of them
were then trained together over 6 epochs with the learning rate reduced by 10
times to ensure that they fit with each other.

4.3 Ablation study

We used OULU’s Protocol 1 to conduct an ablation study to verify the effec-
tiveness of separate modules from the proposed network in four configurations,
as shown in Table 1:
(i) Model A: The proposed model, but with SENet integration excluded. This
model was designed to explicitly recognize the power of the channel-attention.
(ii) Model B : The independent AM was trained with a softmax loss. Accordingly,
the feature maps that Model B extracted were merely able to accommodate to
channel interaction, but they did not respond with region attention.
(ii) Model C : The AM was connected with the AAM, but the advantages of the
AAS were removed.
(iv) Model D : This is the complete proposed model in which the attention is
comprehensively and remarkably boosted in both channel and region spaces by
means of SENets and the attended regions provided by the AAM through the
adaptive translation offsets. Therefore, the performance has far more potential
than that of the other three models.
Advantage of SENets. Similarly to Model A with the mere region attention,
Model D, however offered with the extra understanding of channel interactions,
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achieves the superiority (ACER of 0.6% to 1.4%) over its rival, Model A. This
dominance demonstrates the impact of SENets on the model’s perception in
which the subnets greatly strengthen the power of the AM.
Advantage of the AAS. It can be seen clearly that Model D far outweighs
Model C by an overwhelming margin of 0.2 percentage points due to the main
effectiveness of the AAS.
Advantage of the AAM. In our approach, we used the AAS supervised by
the regression loss JD to alleviate difficulties in accommodating offsets to the
optimal locations. Therefore, Model D with the channel and region attention,
obtained 0.3% ACER lower than Model B with the deficiency of the region atten-
tion, indicating the impact of the AAM on the exploitation of the most relevant
regions.

4.4 Intra-testing

Intra-testing was performed on the OULU-NPU and SiW datasets, which have
a variety of practical protocols that we rigorously followed. The resulting com-
parison is shown in Tables 2 and 3.
SiW In Table 2, the results show that our method outperforms all of the state-
of-the-art methods with a remarkable advantage, demonstrating considerable
ameliorations in tackling or at least mitigating variations in media. To be more
specific, the proposed model brings out a promising improvement at Protocol
3, which is the most demanding protocol for generalizability verification, with a
reduction of nearly 42% compared with the next best method.
OULU-NPU The numerical results in Table 3 demonstrate that our approach
significantly surpasses all of the existing methods with the 1st position. Notably,
we achieved state-of-the-art success over the former best methods at Protocols 1
and 4 by large margins, of around 60% and 33%, respectively. In spite of a high
BPCER of 5.1% at Protocol 4, which is the most challenging protocol verifying
the generalizability under variations of unknown sessions and capturing devices,
the proposed model still dominate the others with the lowest ACER. The results
partly suggest the robustness of our approach under PA variations in terms of
pose, illumination, and capture device.

4.5 Cross-testing

We evaluated the effectiveness of our model on cross-datasets, in which the net-
work alternately is trained on OULU-NPU and assessed on SiW and vice-versa,
via the ACER metric. Our improvements of deeply mining AAS representations
are more confident and transparent as some of the best results are shown. As
shown in Table 4, our model achieved slightly worse results compared with the
best model by approximately 41% and 22% at SiW with OULU’s Protocol 2
and OULU with SiW’s Protocol 1, respectively. We hypothesize that the reason
is that the features extracted in the frequency domain by the above competitor
have more correlations between both datasets. However, the rest still outweighs
state-of-the-art results to a great extent, and especially the ACER of 1.9% for
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Table 3. Intra-testing results on four protocols of OULU-NPU.

Protocol Method APCER (%) BPCER (%) ACER (%)

GRADIENT[34] 1.3 12.5 6.9
BASN[10] 1.5 5.8 3.6
STASN[9] 1.2 2.5 1.9

1 Auxiliary[8] 1.6 1.6 1.6
FaceDe-S[26] 1.2 1.7 1.5

Ours 1.1 0.1 0.6

MixedFASNet[34] 9.7 2.5 6.1
Auxiliary[8] 2.7 2.7 2.7

2 BASN[10] 2.4 3.1 2.7
GRADIANT 3.1 1.9 2.5
STASN[9] 4.2 0.3 2.2

Ours 2.7 1.0 1.9

GRADIENT 2.6± 3.9 5.0± 5.3 3.8± 2.4
FaceDe-S[26] 4.0± 1.8 3.8± 1.2 3.6± 1.6
Auxiliary[8] 2.7± 1.3 3.1± 1.7 2.9± 1.5

3 STASN[9] 4.7± 3.9 0.9± 1.2 2.8± 1.6
BASN[10] 1.8± 1.1 3.6± 3.5 2.7± 1.6

Ours 1.9± 1.4 2.5± 2.1 2.2± 1.7

GRADIENT 5.0± 4.5 15.0± 7.1 10.0± 5.0
Auxiliary[8] 9.3± 5.6 10.4± 6.0 9.5± 6.0
STASN[9] 6.7± 10.6 8.3± 8.4 7.5± 4.7

4 FaceDe-S[26] 1.2± 6.3 6.1± 5.1 5.6± 5.7
BASN[10] 6.4± 8.6 3.2± 5.3 4.8± 6.4

Ours 1.3± 1.1 5.1± 2.0 3.2± 0.9

Table 4. Cross-testing results on SiW and OULU-NPU.

Training Test Method ACER (%)

SiW

OULU 1
Auxiliary[8] 10.0

DepthFreq[33] 9.3
Ours 3.8

OULU 2
Auxiliary[8] 14.0

DepthFreq[33] 7.8

Ours 11.0

OULU 3
Auxiliary[8] 13.8± 5.7

DepthFreq[33] 16.2± 5.0
Ours 9.7± 1.6

OULU 4
Auxiliary[8] 10.0± 8.8

DepthFreq[33] 14.1± 8.3
Ours 1.9± 0.6

OULU

SiW 1
DepthFreq 7.28

Ours 8.90

SiW 2
DepthFreq[33] 6.9± 1.1

Ours 6.7± 0.9

SiW 3
DepthFreq[33] 11.6± 4.7

Ours 6.1± 0.02

SiW with OULU’s Protocol 4 declines by five times compared with the best
result. This verifies that our network is indeed competent at radically exploiting
necessary information for PA detection based on both the AM and RPS with
the multi-level fused features.

5 Discussion

Our approach provided notable improvement through outperforming the previ-
ous model by far[9], which determines the attended regions based only on binary
supervision. Due to the simple constraints on supervision and the heavy reliance
on the weak CNN-LSTM, the previous model has a great tendency to investigate
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(a) Normal CNN-LSTM only (b)  Ours equipped with both channel and region 
attention mechanisms

Fig. 4. 3D visualization of feature distribution extracted from the last layer next to
the classification block of (a) a vanilla CNN-LSTM and (b) our model comprising the
AM, intensified with SENets for channel interaction, and the AAM, enhanced with
region attention. Red points represent genuine cases and blue points are spoof cases.
The figure is best viewed online in color.

inferior outer regions for the spoof cases, namely facial borders and backgrounds
that may have no related clues for differentiation between genuine and spoof
cases. As a result, we are aware of the issue that the effectiveness of the lower
module, namely the AAM, relies heavily on the accuracy of the AM. Accord-
ingly, we boosted the AM’s performance to a great extent by adopting SENets
that increase the interaction in channel. The offsets are also more likely to coin-
cide with optimal locations due to the introduction of the AAS in a multi-task
learning manner.

To better understand the effect of the AAS, the distribution of our multi-level
fused feature at the channel-wise addition stage and that of a conventional CNN-
LSTM on OULU-NPU’s Protocol 1 is illustrated in Fig.4 through t-SNE[35]. It
can be clearly observed that our model represents multi-level fused features with
far better well-clustered properties than those of the conventional model. From
the revealed information in the ablation study and the 3D visual distribution,
our approach with the main purpose of fully resolving the issues of the excessive
and inadequate exploitations in FAS partly yields effectiveness and obvious ad-
vancements in assuaging PA variations. Additional insight is presented in Fig. 5,
where the attention to live images located by the AAM (orange boxes) has close
ties to that of the AM (white boxes). However, the locations to discern spoof
images in both modules are inconsistent with each other, proving that the initial
advice of the AM is not always appropriate for the AAM to follow up.

Despite the benefits of our approach, it has some drawbacks. The model
complexity means that training time is slightly longer than conventional ones as
a result of the multi-step approach to guarantee the unified modules efficiently
work together. Additionally, more memory must be allocated as well because of
the module-driven scheme, but it is a worthwhile trade-off to improve classifica-
tion performance.
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Spoof Images

Inferred Locations
& Anchors

Patches

Estimated Partial 
Depth Maps

Live Images

Inferred Locations 
& Anchors

Patches

Estimated Partial 
Depth Maps

Fig. 5. Illustration of the model’s perception of live and spoof cases in OULU-NPU
Protocol 1. The first four columns in the first row are print attack cases, followed by
four replay attack cases.

6 Conclusions

In this paper, we have described a novel initiative to overcome or at least mit-
igate the dilemma of PA variations in FAS expertise by leaving anxiety of the
excessive and inadequate exploitations of the input behind. Specifically, intro-
ducing the extra channel interaction to the AM and the region attention to the
AAM with the use of the AAS bears witness its feasibility in guiding the model
to mine adequate distinct properties that it needs for PA detection. Our exper-
imental outcomes also reflect a practical perspective that raising the model’s
consciousness to PA variations using attention mechanisms much more forceful
than broadening the model’s horizons in PA variations with some synthetic data.
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