Effects of Numerical Errors on Sample Mahalanobis Distances

Yasuyuki Kobayashi

The numerical error of a sample Mahalanobis distance \(T_2 = y'S^{-1}y \) with sample covariance matrix \(S \) is investigated. It is found that in order to suppress the numerical error of \(T_2 \), the following conditions need to be satisfied. First, the reciprocal square root of the condition number of \(S \) should be larger than the relative error of calculating floating-point real-number variables. The second proposed condition is based on the relative error of the observed sample vector \(y \) in \(T_2 \). If the relative error of \(y \) is larger than the relative error of the real-number variables, the former governs the numerical error of \(T_2 \). Numerical experiments are conducted to show that the numerical error of \(T_2 \) can be suppressed if the two above-mentioned conditions are satisfied.

http://doi.org/10.1587/transinf.2015EDP7348